การยอบรับและลักษณะทางคุณภาพของอาหารว่างบังสะวิรัติเสริมสมุนไพร (ข้าวเกรียบ) Acceptability and Quality Characteristics of Vegetarian Snack (Khao Krieb) Enhanced with Herbs

สุภางค์ เรื่องฉาย

อาจารย์ประจำสาขาวิชาวิทยาศาสตร์การอาหาร คณะวิทยาศาสตร์ มหาวิทยาลัยหอการค้าไทย E-mail : supang_rua@utcc.ac.th

บทคัดย่อ

การประเมินคุณภาพทางประสาทสัมผัสที่มีต่อข้าวเกรียบมังสะวิรัติเสริมสมุนไพร 3 ชนิด ได้แก่ ขิงผง ข่าผง และตะไคร้ผง ที่ระดับปริมาณ 3 และ 4 เปอร์เซ็นต์โดยน้ำหนัก พบว่าการเพิ่มปริมาณสมุนไพรส่งผลให้ข้าวเกรียบ ได้รับคะแนนทางประสาทสัมผัสในด้านสีลดลงและผลิตภัณฑ์ข้าวเกรียบมีค่าแรงกดเพิ่มมากขึ้นข้าวเกรียบมังสะวิรัติ เสริมข่าผงในปริมาณ 3 เปอร์เซ็นต์ ได้รับการยอมรับมากที่สุดทางด้านสี กลิ่นรสสมุนไพร รสชาติและความชอบโดย รวม มีการพองตัวหลังจากการทอด 70 เปอร์เซ็นต์ เมื่อเปรียบเทียบผลการเก็บรักษาผลิตภัณฑ์ข้าวเกรียบ มังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ กับข้าวเกรียบมังสะวิรัติ (สูตรพื้นฐาน) โดยบรรจุในถุง polyethylene และถุง aluminium foil ซึ่งบรรจุ oxygen absorber และเก็บไว้ที่อุณหภูมิห้อง (25-33⁰ซ) เป็นเวลา 4 สัปดาห์ ปรากฏว่า ข้าวเกรียบที่บรรจุในถุง aluminium foil มีคุณภาพดีกว่าข้าวเกรียบที่บรรจุในถุง polyethylene ปริมาณ TBA และปริมาณจุลินทรีย์ทั้งหมดและปริมาณยีสต์และราที่พบในข้าวเกรียบมังสะวิรัติเสริมข่าผงมีค่าน้อยกว่า ที่พบในข้าวเกรียบสูตรพื้นฐาน ผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ สามารถเก็บรักษาได้อย่าง น้อย 4 สัปดาห์ โดยยังได้รับการยอมรับจากผู้บริโภคมากที่สุดทุกปัจจัย แต่ผลิตภัณฑ์มีสีคล้ำขึ้น ส่วนเปอร์เซ็นต์ การพองตัวและแรงกดมีค่าลดลง

คำสำคัญ: ข้าวเกรียบมังสะวิรัติ สมุนไพร ลักษณะทางคุณภาพ

Abstract

Vegetarian snacks (Khao Krieb) were developed with 2 levels (3% or 4%) of 3 selected dried herb powder including ginger powder (*Zingiber officinal Rosc*), galanga powder (*Alpinia galanga*) and lemongrass powder (*Cymbopogon citatus*). Increased levels of herb powder decreased (p<0.05) sensory colour attributes, but increased (p<0.05) objective compressed force of vegetarian snack products. The product with 3% galanga powder was rated in sensory scores for colour, flavour, taste, and overall acceptance higher than those with other herbs, and exhibited 70 percentage of expansion after frying. The study of storage time (25-33^OC for 4 weeks) showed that vegetarian snack packed in aluminium foil bags with oxygen absorber had more acceptable than that packed in polyethylene bags with oxygen absorber. The decrease in TBA and microbial growth were found in the product with 3% galanga powder compared to the control product. According to the sensory evaluation, the vegetarian snack with 3% galanga powder was rated in highest scores for all attributes during the storage period of 4 weeks. However, the product was darker and decreased in compressed force.

Keywords: Vegetarian snack, Herbs, Quality characteristics

สมุนไพรถือเป็นส่วนที่มีสรรพคุณทางยาและมีประโยชน์ต่อสุขภาพ ในประเทศไทยก็มีสมุนไพร มากมายหลายชนิด บางอย่างก็คือพืชสวนครัวและเครื่องเทศซึ่งสามารถหาได้ง่ายและมีใช้ตลอดทั้งปี ขิงมีสรรพคุณแก้หอบ แก้ท้องร่วง แก้นิ่ว ข่าใช้รักษาโรคผิวหนัง กลากเกลื้อนและลมพิษ มีสารพวก methyl cinnamate ceneol eugenol เป็นต้น ตะไคร้ช่วยลดความดัน มีฤทธิ์ฆ่าเซื้อจุลินทรีย์ในอาหาร (สถาบันวิจัยสมุนไพร,2546)

ข้าวเกรียบเป็นอาหารว่างประเภทขบเคี้ยวของคนไทยที่ผลิตจากแป้ง ผสมด้วยเนื้อสัตว์หรือผัก เครื่องปรุงรส (กองส่งเสริมและพัฒนาด้านการมาตรฐาน,มปป) และยังสามารถผลิตเพื่อใช้เป็นอาหารเสริม สุขภาพได้ เช่น ข้าวเกรียบเสริมวิตามินจากตับไก่/วัว ข้าวเกรียบพักทอง (สิติมาและคณะ,2540) สมุนไพรก็จัดเป็น ส่วนหนึ่งในการเป็นอาหารเสริมสุขภาพ และการนำสมุนไพรมาเสริมในผลิตภัณฑ์ข้าวเกรียบยังเป็นการลด อัตราส่วนของเนื้อสัตว์ในสูตรอีกทางหนึ่ง เป็นการตอบสนองความต้องการผู้บริโภคอาหารแบบชีวจิต เป็นการเพิ่มสีของสมุนไพรให้กับข้าวเกรียบแทนการใช้สีผสมอาหารพวกสารเคมี เนื่องจากมีประกาศกระทรวง สาธารณสุข ฉบับที่ 66 (2525) ซึ่งควบคุมการใช้สีผสมอาหารในผลิตภัณฑ์ และเป็นการเพิ่มกลิ่นรสสมุนไพร ทำให้น่ารับประทานมากขึ้น การนำสมุนไพรมาเสริมในข้าวเกรียบน่าจะช่วยรักษาคุณภาพของข้าวเกรียบให้ คงอยู่ยาวนานขึ้น งานวิจัยนี้จึงมีวัตถุประสงค์ที่จะศึกษาถึงความเป็นไปได้ในการใช้ขิงผง ข่าผง และตะไคร้ผง เสริมคุณค่าในการเก็บรักษาในข้าวเกรียบมังสะวิรัติ

วัสดุและวิธีการ

วัตถุดิบ

- 1. มันเทศ
- 2. เผือก
- แป้งมันสำปะหลังตราปลาดาว
- ผงฟุตราเบสท์พู้ดส์
- 5. น้ำตาลทรายมิตรผล

 สมุนไพร (เตรียมสมุนไพร โดยนาขิง ข่า ตะไคร้ มาหั่น อบแห้งที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 5 ชั่วโมง บดให้มีความละเอียด 120 mesh มีความชื้น 4.7-5.2 เปอร์เซ็นต์)

วิธีการทดลอง

1. ศึกษาสูตรและกรรมวิธีการผลิตข้าวเกรียบมังสะวิรัติ โดยมีส่วนผสมดังแสดงในตารางที่ 1

ส่วนผสม	ปริมาณที่ใช้			
	้น้ำหนัก(กรัม)	เปอร์เซ็นต์โดยน้ำหนัก		
นเทศนึ่ง	500	16.19		
มือกนึ่ง	500	16.19		
ป้งมันสำปะหลัง	1000	32.38		
าตาลทราย	50	1.61		
เลือ	20	0.64		
ริกไทยบด	4	0.12		
ระเทียมบด	12	0.38		
งฟู	6	0.19		
งฟู ว่าเดือด	1000	32.38		

ตารางที่ 1 ส่วนผสมข้าวเกรียบมังสะวิรัติ

โดยนำมันเทศนึ่งและเผือกนึ่งมาบดให้ละเอียด ผสมกับแป้งมันสำปะหลัง น้ำตาลทราย เกลือ พริกไทยบด กระเทียมบด ผงฟู และน้ำเดือด นวดให้เข้ากันจนเนียน ซั่งให้ได้น้ำหนัก 400 กรัม ปั้นเป็นท่อนกลมยาว(เส้นผ่าน ศูนย์กลางประมาณ 5 เซนติเมตร) ใส่ถุงพลาสติกนึ่ง 2 ชั่วโมง นำไปแช่แข็ง (อุณหภูมิ -10 องศาเซลเซียส) เป็นเวลา 1 คืน (12-20 ชั่วโมง) นำมาหั่นเป็นแผ่นที่มีความหนา 1.5 มิลลิเมตร อบแห้งในตู้อบที่อุณหภูมิ 70 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง (ความชื้นประมาณ 8.7-9.2 เปอร์เซ็นต์) เก็บใส่ภาชนะที่แห้งและสะอาดเพื่อใช้ในการทดลอง ต่อไป

2. การพัฒนาสูตรการผลิตข้าวเกรียบมังสะวิรัติเสริมสมุนไพร

โดยนำสูตรพื้นฐานของผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติมาพัฒนาและศึกษาปัจจัยเกี่ยวกับชนิดของสมุนไพร ได้แก่ ขิงผง ข่าผง ตะไคร้ผง ปริมาณของสมุนไพรที่ 3 และ 4 เปอร์เซ็นต์ ได้สูตรการทดลองจำนวน 7 สูตรดังนี้ สูตรที่ 1 ข้าวเกรียบสูตรพื้นฐาน (ไม่เติมสมุนไพร)

สูตรที่ 2 ข้าวเกรียบเสริมขิงผง 3 เปอร์เซ็นต์โดยน้ำหนัก

สูตรที่ 3 ข้าวเกรียบเสริมขิงผง 4 เปอร์เซ็นต์โดยน้ำหนัก

สูตรที่ 4 ข้าวเกรียบเสริมข่าผง 3 เปอร์เซ็นต์โดยน้ำหนัก

สูตรที่ 5 ข้าวเกรียบเสริมข่าผง 4 เปอร์เซ็นต์โดยน้ำหนัก

สูตรที่ 6 ข้าวเกรียบเสริมตะไคร้ผง 3 เปอร์เซ็นต์โดยน้ำหนัก

สูตรที่ 7 ข้าวเกรียบเสริมตะไคร้ผง 4 เปอร์เซ็นต์โดยน้ำหนัก

จากนั้นนำผลิตภัณฑ์มาทดสอบคุณภาพเปรียบเทียบกับสูตรพื้นฐานทางด้านต่างๆดังนี้

2.1 ด้านประสาทสัมผัส โดยวิธี 9 - point hedonic scale test (1=ไม่ชอบมากที่สุด ,9=ชอบมากที่สุด) ใช้ผู้ซิมจำนวน 24 คน จำนวน 2 ซ้ำ (ปัจจัยที่ทดสอบ ได้แก่ สี กลิ่นรสสมุนไพร ความกรอบ รสชาติ ความชอบ โดยรวม) วิเคราะห์ข้อมูลทางสถิติแบบ RCBD (Randomized Complete Block Design)

2.2 ด้านกายภาพ

- วัดค่าสี โดยใช้เครื่อง Hunter lab (โดยนำข้าวเกรียบที่ทอดแล้วมาวางบนกระดาษสีดำซึ่งกำหนดช่องให้ แสงผ่านมีขนาดเส้นผ่านศูนย์กลางของการวัดเท่ากับ 5 เซนติเมตร)

เปอร์เซ็นต์การพองตัว โดยวิธี Rapeseed displacement
คำนวณจาก <u>ปริมาณของผลิตภัณฑ์ที่ทอดแล้ว</u> x 100
ปริมาณของผลิตภัณฑ์ที่ยังไม่ทอด

- วัดค่าแรงกด โดยใช้เครื่อง Texturometer

3. ศึกษาการเก็บรักษาผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมสมุนไพรที่ได้รับการยอมรับมากที่สุดเปรียบเทียบ กับสูตรพื้นฐานเป็นเวลา 4 สัปดาห์ โดยเก็บผลิตภัณฑ์ที่ยังไม่ทอดในถุง polyethylene เปรียบเทียบกับถุง aluminium foil ซึ่งบรรจุ oxygen absorber ที่อุณหภูมิห้อง (25-33 องศาเซลเซียส) จากนั้นน้ำผลิตภัณฑ์มาทอด ทุกสัปดาห์ เพื่อตรวจสอบคุณภาพทางด้าน

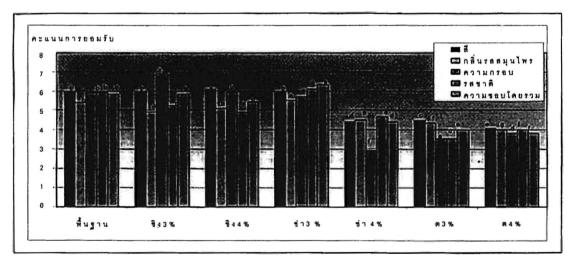
3.1 ด้านประสาทสัมผัส โดยวิธี 9 - point hedonic scale test (1=ไม่ชอบมากที่สุด ,9=ชอบมากที่สุด) ใช้ผู้ชิมจำนวน 24 คน จำนวน 2 ซ้ำ (ปัจจัยที่ทดสอบ ได้แก่ สี กลิ่นรส ความกรอบ รสชาติ ความชอบโดยรวม) ทุก 7 วัน วิเคราะห์ข้อมูลทางสถิติแบบ Factorial Design โดยนำผลการทดลองที่ได้มาวิเคราะห์ความแปรปรวน (Analysis of variance, Anova) เปรียบเทียบค่าเฉลี่ยระหว่างทรีทเมนต์โดยใช้ Duncan's New Multiple Range

3.2 ด้านกายภาพ ทุก 7 วัน

- วัดค่าสี โดยใช้เครื่อง Hunter lab (โดยนำข้าวเกรียบที่ทอดแล้วมาวางบนกระดาษสีดำซึ่ง กำหนดช่องให้แสงผ่านมีขนาดเส้นผ่านศูนย์กลางของการวัดเท่ากับ 5 เซนติเมตร)

- เปอร์เซ็นต์การพองตัว โดยวิธี Rapeseed displacement

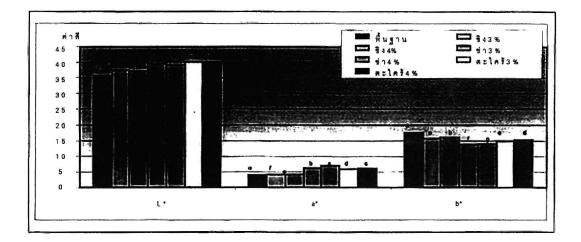
คำนวณจาก <u>ปริมาณของผลิตภัณฑ์ที่ทอดแล้ว</u> x 100 ปริมาณของผลิตภัณฑ์ที่ยังไม่ทอด


- วัดค่าแรงกด โดยใช้เครื่อง Texturometer

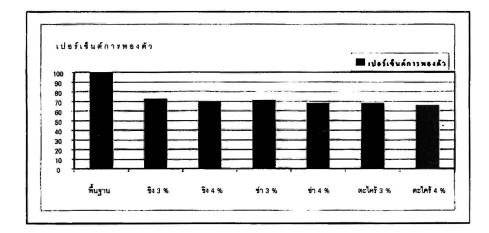
3.3 ด้านเคมี

- หาค่า TBA ซึ่งเก็บไว้ที่ 0, 4, 8 และ 12 วัน (ตามวิธี AOAC 1990)
- 3.4 ด้านจุลินทรีย์ ทำการตรวจหาปริมาณเชื้อจุลินทรีย์ ทุก 7 วัน
- จำนวนจุลินทรีย์ทั้งหมด (ตามวิธี AOAC 1990)
- จำนวนยีสต์ (ตามวิธี AOAC 1990)
- จำนวนรา (ตามวิธี AOAC 1990)

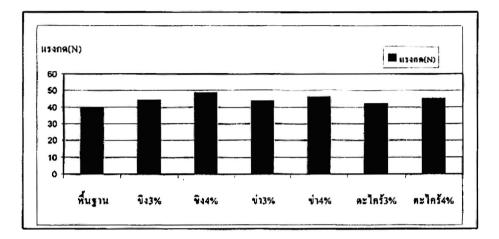
ผลการทดลอง


การพัฒนาข้าวเกรียบมังสะวิรัติเสริมสมุนไพร โดยศึกษาถึงชนิดของสมุนไพร ได้แก่ ขิงผง ข่าผง และตะไคร้ ผง ที่ปริมาณ 3 และ 4 เปอร์เซ็นต์ พบว่าในการประเมินคุณภาพทางประสาทสัมผัสผู้บริโภคยอมรับข้าวเกรียบ มังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์มากที่สุดที่ปัจจัยด้านสี กลิ่นรสสมุนไพร รสชาติ และความชอบโดยรวม เท่ากับ 6 5.5 6.1 และ 6.33 ตามลำดับ ส่วนปัจจัยด้านความกรอบผู้บริโภคยอมรับข้าวเกรียบมังสะวิรัติเสริมขิงผง 3 เปอร์เซ็นต์มากที่สุด เท่ากับ 6.92 ดังแสดงผลในรูปที่ 1

รูปที่ 1 ผลการประเมินคุณภาพทางประสาทสัมผัสที่มีต่อข้าวเกรียบมังสะวิรัติเสริมสมุนไพร ที่ 3 และ 4 เปอร์เซ็นต์


^{a.b.c.d.e.f.g} อักษรกำกับต่างกันในคอลัมน์เดียวกันแสดงว่ามีความแตกต่างกันอย่างมี นัยสำคัญ (p<0.05) เปรียบเทียบความแตกต่างโดยวิธี Duncan' New Multiple Range

จากการทดสอบคุณภาพทางกายภาพด้านสี เปอร์เซ็นต์การพองตัวและแรงกดของผลิตภัณฑ์ข้าวเกรียบ มังสะวิรัติ พบว่าสูตรที่เสริมสมุนไพรผงในปริมาณมากจะทำให้สีของผลิตภัณฑ์เข้มกว่า มีเปอร์เซ็นต์การพอง ตัวน้อยกว่า มีค่าแรงกด(ความแข็ง)มากกว่าสูตรที่เสริมสมุนไพรในปริมาณน้อย ดังแสดงในรูปที่ 2-4



รูปที่ 2 ค่าสีของข้าวเกรียบมังสะวิรัติเสริมสมุนไพรที่ 3 และ 4 เปอร์เซ็นต์

^{a.b.c.d.e.f.g} อักษรกำกับต่างกันในคอลัมน์เดียวกันแสดงว่ามีความแตกต่างกันอย่างมีนัยสำคัญ (p<0.05) เปรียบเทียบ ความแตกต่างโดยวิธี Duncan' New Multiple Range

ฐปที่ 3 เปอร์เซ็นต์การพองตัวของข้าวเกรียบมังสะวิรัติเสริมสมุนไพรที่ 3 และ 4 เปอร์เซ็นต์

รูปที่ 4 ค่าแรงกดของข้าวเกรียบมังสะวิรัติเสริมสมุนไพรที่ 3 และ 4 เปอร์เซ็นต์

เนื่องจากปริมาณสมุนไพรที่เพิ่มมากขึ้น ทำให้สีของผลิตภัณฑ์เข้มขึ้น โดยมีค่าความสว่าง (L*) ลดลง ส่วนค่า a และ b เพิ่มขึ้น การใช้ตะไคร้ผงส่งผลให้ข้าวเกรียบมีสีเข้มมากกว่าการใช้ข่าผงและขิงผง รวมทั้ง ปริมาณสมุนไพรที่เพิ่มขึ้นนี้ทำให้ผลิตภัณฑ์มีความแน่นเนื้อมากขึ้น เนื่องจากน้ำที่ใช้ผสมในสูตรมีอัตราส่วน ลดลง มีผลทำให้เปอร์เซ็นต์การพองตัวของข้าวเกรียบมังสะวิรัติเสริมสมุนไพรลดลงเช่นกัน เพราะน้ำเป็นตัว ช่วยให้ผลิตภัณฑ์พองตัวได้ดี เมื่อเปอร์เซ็นต์การพองตัวลดลงส่งผลให้ต้องใช้แรงกดมากขึ้นตามไปด้วย (Booth,1990)

จากการที่ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 % ได้รับการยอมรับทางประสาทสัมผัสเกือบทุกด้าน โดยเฉพาะด้านสีที่ผู้บริโภคนิยมผลิตภัณฑ์ที่มีสีอ่อนมากกว่ามีเปอร์เซ็นต์การพองตัวมากกว่าจึงเลือกข้าวเกรียบมังสะ วิรัติเสริมข่าผง 3 เปอร์เซ็นต์ ไปศึกษาการเก็บรักษาต่อไป

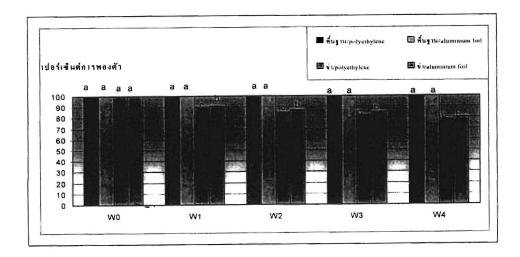
การศึกษาอายุการเก็บรักษาผลิตภัณฑ์

เมื่อเก็บรักษาผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ (ที่ยังไม่ทอด) เปรียบเทียบกับข้าวเกรียบ สูตรพื้นฐาน (ที่ยังไม่ทอด) โดยบรรจุในถุง polyethylene กับถุง aluminium foil ซึ่งบรรจุ oxygen absorber ที่อุณหภูมิ ห้อง (25-33^oซ) เป็นเวลา 4 สัปดาห์ เมื่อนำข้าวเกรียบไปทอด พบว่าการยอมรับของผู้บริโภคที่มีต่อ ผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ และข้าวเกรียบสูตรพื้นฐาน ตลอดการเก็บรักษา 4 สัปดาห์มีความแตกต่างกันทางสถิติอย่างมีนัยสำคัญ (p < 0.05) ทางด้านสี กลิ่นรส ความกรอบ รสชาติ และ ความชอบโดยรวม โดยข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ ที่บรรจุในถุง aluminium foil ซึ่งบรรจุ oxygen absorber ได้รับการยอมรับมากที่สุด ทางด้านสี กลิ่นรส ความกรอบ รสชาติ และความชอบโดยรวม ในทุก สัปดาห์ ดังแสดงในตารางที่ 2

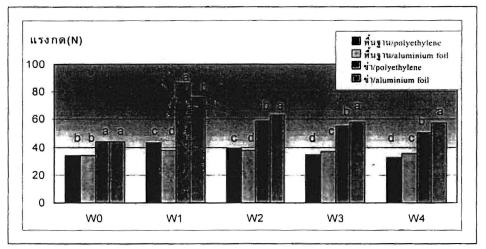
ตารางที่ 2 ผลการประเมินคุณภาพทางประสาทสัมผัสที่ผู้บริโภคมีต่อข้าวเกรียบมังสะวิรัติที่เก็บรักษาเป็น เวลา 4 สัปดาห์

สัปดาห์ ที่	สูตร	สีสี้	กลิ่นรส	ความกรอบ	รสชาติ	ความชอบ โดยรวม
0	พื้นฐาน	6.92 ^d	5.67 ¹	6.42 ⁹	6.5 [°]	6.92 ^d
	ข่า 3%	6.92 ^d	6.5 ^d	5.08 ⁱ	6.08 ⁱ	6.25 ⁹
1	พื้นฐาน/polyethylene	5.67 ^k	5.5 ¹	5.83 ⁱ	6.33 ^g	6.08 ^h
	พื้นฐาน/aluminium foil	5.92 ^j	5.75 ^h	6.08i	6.33 ^g	6.33 ^f
	ข่า 3%/polyethylene	6.17 ⁱ	6.17 ^g	5.83j	6.25 ^h	6.33 ¹
	ข่า 3%/ aluminium foil	6.42 ⁹	6.17 ⁹	6.42 ⁹	6.5 [°]	6.42 ^e
2	พื้นฐาน/polyethylene	6.92 ^d	6.42 ^e	7 ^d	6.92 [°]	6.52 ⁹
	พื้นฐาน/aluminium foil	7.5 ^a	6.83 ^c	7.08 ^c	6.92 ^c	6.52 ^d
	ข่า 3%/polyethylene	7 ^c	7.08 ^b	7.33 ^b	6.67 ^d	7.17 ⁶
	ข่า 3%/ aluminium foil	7.33 ^b	7.33 ^ª	7.67 ^ª	7.08 ^b	7.42 ^a
3	พื้นฐาน/polyethylene	6.33 ^h	6.33 ^f	5.75 ^k	6.42 ^f	6.25g
	พื้นฐาน/aluminium foil	6.83 ^e	6.33 ^t	6.25 ^h	6.92 ^c	6.5 [°]
	ข่า 3%/polyethylene	6.58 ^f	6.5 ^d	6.5 ^f	6.25 ^h	7.08 ^c
	ข่า 3%/ aluminium foil	6.83 ^e	6.83 ^e	6.58 ^e	7.17 ^a	7.42 ^ª

สัปดาห์ ที่	ត្សូ២រ	ส้	กลิ่นรส ้	ความกรอบ	รสชาติ	ความชอบ โดยรวม
4	พื้นฐาน/polyethylene	6.33 ^h	6.33 ^f	5.75 ^k	6.42 ^f	6.25 ⁹
	พื้นฐาน/aluminium foil	6.83 [°]	6.33 ^f	6.25 ^h	6.92 ^c	6.5 ^e
	ข่า 3%/polyethylene	6.58 ^f	6.5 ^d	6.5 ^f	6.25 ^h	7.08 ^c
	ข่า 3%/ aluminium foil	6.83 ^e	6.83 [°]	6.58 ^e	7.17 ^ª	7.42 ^ª

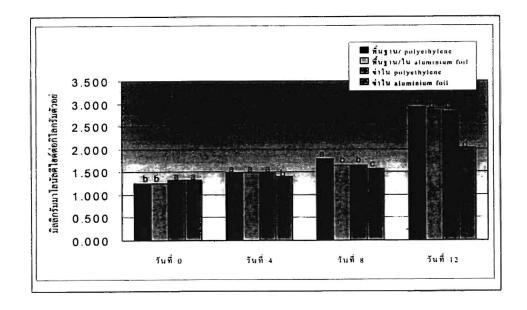

^{a.b.c.d.e.f.g.h.i,i,k} อักษรกำกับต่างกันในคอลัมน์เดียวกันแสดงว่ามีความแตกต่างกันอย่างมีนัยสำคัญ (p<0.05) เปรียบเทียบความแตกต่างโดยวิธี Duncan' New Multiple Range

ผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ และข้าวเกรียบสูตรพื้นฐาน ตลอดการเก็บรักษา 4 สัปดาห์ เมื่อนำมาตรวจสอบคุณภาพทางกายภาพ พบว่าสีของผลิตภัณฑ์จะมีความสว่าง (L*) ลดลง นั่น หมายความว่าผลิตภัณฑ์ที่เก็บรักษาจะมีสีคล้ำขึ้น ดังแสดงผลในตารางที่ 3 ส่วนเปอร์เซ็นต์การพองตัวของ ผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ค่อยๆลดลงทุกสัปดาห์ โดยผลิตภัณฑ์ที่บรรจุในถุง aluminium foil ซึ่งบรรจุ oxygen absorber จะมีเปอร์เซ็นต์การพองตัวดีกว่าผลิตภัณฑ์ที่บรรจุในถุง polyethylene ซึ่งบรรจุ oxygen absorber ดังแสดงในรูปที่ 5 นอกจากนี้ยังพบว่าผลิตภัณฑ์ที่เก็บรักษาจะมีค่าแรงกดลดลง ดังแสดงในรูปที่ 6


		ଶ୍ୱାମନ					
สัปดาห์	ค่าสี	พื้นฐาน/polyethylene*	พื้นฐาน/aluminium foil*	ข่า/polyethylene*	ข่า/aluminium foil*		
0	Ľ	55.01 [°]	55.01 [°]	42.8 ^b	42.8 ^b		
	a	0.01 ^b	0.01 ^b	6.94 ^a	6.94 ^a		
	b	12.03 ^b	12.03 ^b	14.17 [°]	14.17 ^a		
1	L	54.03 ^{ab[.]}	54.12 ^ª	39.41 [°]	39.55 ^b		
	a	0.06 ^c	0.03 ^d	6.13 ^b	6.17 ^a		
	b	11.61 [°]	1.57 ^d	13.6 ^b	13.8 ^ª		
2	L	49.49 ^b	49.58 [°]	30.73 ^d	30.96 [°]		
	a	0.18 ^c	0.11 ^d	4.74 ^b	4.82 ^ª		
	b.	8.13 ^c	8.01 ^d	10.15 ^b	10.32ª		
3	Ŀ	36.39 ^b	36.93 [°]	27.1 [°]	27.3 ^c		
	a	0.23 [°]	0.19 ^d	1.89 ^b	1.98 ^ª		
	b	5.97 [°]	5.42 ^d	7.01 ^b	7.39 [°]		
4	Ľ	23.76 ³	23.79 [°]	23.26 ^c	23.7 ^b		
	a	0.25 [°]	0.23 ^d	0.82 ^b	0.89 ^a		
	b	1.96 [°]	1.86 ^d	2.04 ^b	2.16 ^ª		

ตารางที่ 3 ค่าสีของผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติที่เก็บรักษาเป็นเวลา 4 สัปดาห์

^{a.b.c.d} อักษรกำกับต่างกันในคอลัมน์เดียวกันแสดงว่ามีความแตกต่างกันอย่างมีนัยสำคัญ (p< 0.05) เปรียบเทียบความแตกต่างโดยวิธี Duncan' New Multiple Range



รูปที่ 5 เปอร์เซ็นต์การพองตัวของข้าวเกรียบมังสะวิรัติที่เก็บรักษาเป็นเวลา 4 สัปดาห์ ^{a.b.c.d} อักษรกำกับต่างกันในคอลัมน์เดียวกันแสดงว่ามีความแตกด่างกันอย่างมีนัยสำคัญ (p< 0.05) เปรียบเทียบความแตกต่างโดยวิธี Duncan' New Multiple Range

รูปที่ 6 ค่าแรงกดของข้าวเกรียบมังสะวิรัติที่เก็บรักษาเป็นเวลา 4 สัปดาห์ a,b,c,d อักษรกำกับต่างกันในคอลัมน์เดียวกันแสดงว่ามีความแตกต่างกันอย่างมีนัยสำคัญ (p< 0.05) เปรียบเทียบความแตกต่างโดยวิธี Duncan' New Multiple Range

การวิเคราะห์ทางเคมีเพื่อหาค่า TBA พบว่าเมื่อเก็บรักษาผลิตภัณฑ์นานขึ้นค่า TBA ก็จะเพิ่มขึ้น โดยผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ที่บรรจุในถุง aluminium foil (บรรจุ oxygen absorber ไว้ด้วย) มีค่า TBA เพิ่มขึ้นน้อยที่สุด ดังแสดงในรูปที่ 7 การเกิดTBA มาจากการเกิดปฏิกิริยาออกซิเดชั่นของไขมัน (lipid oxidation) โดยกรดไขมันชนิดไม่อิ่มตัวในผลิตภัณฑ์ทำปฏิกิริยากับออกซิเจน เกิดเป็นสารอัลดีไฮด์ อันเป็นสาเหตุทำให้เกิดกลิ่นหืนในผลิตภัณฑ์ได้ ในอุตสาหกรรมอาหารจึงต้องมีการเติมสารกันหืน (antioxidant) เช่น วิตามินอี วิตามินซี และสาร BHT เป็นต้น เพื่อป้องกันการเกิดกลิ่นหืน ถือเป็นการรักษาคุณภาพของผลิตภัณฑ์ จากการวิจัยทำให้เห็นว่า ข่าผงน่าจะส่งผลในลักษณะที่เป็นสารกันหืนในข้าวเกรียบมังสะวิรัติได้ดีที่สุด รวมทั้ง ในถุง aluminium foil ซึ่งบรรจุ oxygen absorber นั่นมีประสิทธิภาพในการป้องกันการซึมผ่านของออกซิเจนเข้าสู่ ภายในได้ดีกว่าถุง polyethylene ซึ่งบรรจุ oxygen absorber

รูปที่ 7 ค่า TBA ของข้าวเกรียบมังสะวิรัติที่เก็บรักษาเป็นเวลา 0 4 8 และ 12 วัน ^{a.b.c.d} อักษรกำกับต่างกันในคอลัมน์เดียวกันแสดงว่ามีความแตกต่างกันอย่างมีนัยสำคัญ (p< 0.05) เปรียบเทียบความแตกต่างโดยวิธี Duncan' New Multiple Range

ปริมาณเชื้อจุลินทรีย์ในผลิตภัณฑ์ที่เก็บรักษาเป็นเวลา 4 สัปดาห์ ทุกผลิตภัณฑ์จะมีปริมาณจุลินทรีย์ ทั้งหมด ปริมาณยีสต์ และปริมาณราเพิ่มมากขึ้นตามระยะเวลาที่เก็บรักษา โดยพบว่าผลิตภัณฑ์ข้าวเกรียบ มังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ ที่บรรจุในถุง aluminium foil ซึ่งบรรจุ oxygen absorber จะมีปริมาณจุลินทรีย์ทั้งหมด ปริมาณยีสต์ และปริมาณรา เพิ่มขึ้นน้อยที่สุด ดังแสดงในตารางที่ 4 เนื่องจากข่ามีสมบัติในการยับยั้งการเจริญ ของจุลินทรีย์หรือที่เรียกว่า antimicrobial effect โดยในข่าจะมีสารที่เรียกว่า acetoxychavicol acetate (สถาบันวิจัย สมุนไพร,2546) (E)-8 beta, 17-epoxylabd-12-ene-15, 16-dial ซึ่งมีฤทธิ์ต้านเชื้อราได้ (Haraguchi,1996) จึงส่งผลให้ ปริมาณเชื้อจุลินทรีย์ในผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์มีปริมาณเพิ่มขึ้นน้อยที่สุด ซึ่งเป็น ไปตามข้อกำหนดจาก มอก. 701-2530

สัปดาห์		ଶ୍ୱଳାତ					
ที่	ชนิดจุลินทรีย์	พื้นฐาน	พื้นฐาน	ข่า 3%	ข่า 3%		
		/polyethylene	/aluminium foil	/polyethylene	/aluminium foil		
0	TFC(CFU/g)	0	0	0	0		
	YEAST(CFU/g)	0	0	0	0		
	MOLD(CFU/g)	0	0	0	0		
1	TFC(CFU/g)	0	0	0	0		
	YEAST(CFU/g)	0	0	0	0		
	MOLD(CFU/g)	0	0	0	0		
2	TFC(CFU/g)	600	300	200	0		
	YEAST(CFU/g)	400	100	100	0		
	MOLD(CFU/g)	100	0	100	0		
3	TFC(CFU/g)	800	500	300	200		
	YEAST(CFU/g)	400	200	200	100		
	MOLD(CFU/g)	200	100	200	100		
4	TFC(CFU/g)	1100	800	400	300		
	YEAST(CFU/g)	600	400	200	200		
	MOLD(CFU/g)	400	200	200	200		

പ്പപ്	କ ସାଶୀ ୬	-	କର୍ଣ୍ଣ ୧ ୧	ها م
ตารางที่ 4 ปริมาณเชื้อจ	เลนทรยในขาว	แกรยบมงสะวรเ	ตทเกบรกษาเร	ปนเวลา 4 สปดาห

สรุปผลการทดลอง

ผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ ที่บรรจุในถุง aluminium foil(บรรจุ oxygen absorber ไว้ด้วย) สามารถเก็บรักษาได้ 4 สัปดาห์เป็นอย่างน้อย ซึ่งได้รับการยอมรับจากผู้บริโภคมากที่สุดทางด้านสี กลิ่นรส ความกรอบ รสชาติ และความชอบโดยรวม มีเปอร์เซ็นต์การพองตัวและมีค่าแรงกดลดลงแต่มีค่ามากกว่า ผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ ที่บรรจุในถุง polyethylene (บรรจุ oxygen absorber ไว้ด้วย) ซึ่งเปอร์เซ็นต์การพองตัวที่มากกว่าส่งผลให้ลักษณะทางเนื้อสัมผัสของผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ ที่บรรจุในถุง aluminium foil(บรรจุ oxygen absorber ไว้ด้วย) มีความกรอบดีกว่าผลิตภัณฑ์ข้าวเกรียบ มังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ ที่บรรจุในถุง polyethylene (บรรจุ oxygen absorber ไว้ด้วย) มังสะวิรัติเสริมข่าผง 3 เปอร์เซ็นต์ ที่บรรจุในถุง polyethylene (บรรจุ oxygen absorber ไว้ด้วย) มีค่า TBA ที่เพิ่มขึ้น น้อยที่สุด และมีปริมาณจุลินทรีย์ทั้งหมด ปริมาณยีสต์และปริมาณราเพิ่มขึ้นน้อยที่สุด จากการวิจัยนี้พบว่าการ เสริมสมุนไพรลงในผลิตภัณฑ์ข้าวเกรียบมังสะวิรัติทำให้ข้าวเกรียบมีเนื้อแน่นขึ้น เปอร์เซ็นต์การพองตัวน้อยลง กลิ่นรสของผลิตภัณฑ์น่ารับประทานมากขึ้น อีกทั้งข่ามีคุณสมบัติเป็น natural antioxidant / antimicrobial agent จึงเป็นทางเลือกหนึ่งที่สามารถนำไปใช้ในอุตสาหกรรมอาหารเพื่อลดการใช้สารกันหืนประเภทสารเคมีได้

บรรณานุกรม

กองส่งเสริมและพัฒนาด้านการมาตรฐาน. มปป. เอกสารคู่มือผู้บริโภค. สำนักงานมาตรฐานผลิตภัณฑ์ อุตสาหกรรม.

สาธารณลุข,กระทรวง. "ประกาศ เรื่องอาหารห้ามใส่สี ฉบับที่ 66(2525)"

สถาบันวิจัยสมุนไพร กรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข. สมุนไพรที่ใช้ภายนอก. (สิงหาคม 2546)

สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม. 2530. มาตรฐานผลิตภัณฑ์อุตสาหกรรมข้าวเกรียบ (มอก.701-2530)

สิติมา จิตตินันท์, อุไรพร จิตต์แจ้ง และเอมอร วสันตวิสุทธิ์. <u>การพัฒนาข้าวเกรียบปลาท้องถิ่นภาคใต้ให้เป็น</u> ข้าวเกรียบเสริมวิตามินเอ จากตับไก่และตับวัว. สถาบันวิจัยโภชนาการ มหาวิทยาลัยมหิดล, 2540.

AOAC. 1990. Official Methods of Analysis. 15th ed. Virginia: Association of Official Analytical Chemists.

Booth, R.G. ed. Snack Food. New York : Van Nostrand Reinhold, 1990.

Haraguchi, H. eds. "Antifungal activity from *Alpinia galanga* and the competition for incorporation of unsaturated fatty acids in cell growth," <u>Planta Med.</u> August 1996, p.308.